Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty

نویسندگان

  • Huibin Liu
  • Wei Chen
  • Michael Kokkolaras
  • Panos Y. Papalambros
  • Harrison M. Kim
چکیده

Analytical target cascading (ATC) is a methodology for hierarchical multilevel system design optimization. In previous work, the deterministic ATC formulation was extended to account for random variables represented by expected values to be matched among subproblems and thus ensure design consistency. In this work, the probabilistic formulation is augmented to allow the introduction and matching of additional probabilistic characteristics. A particular probabilistic analytical target cascading (PATC) formulation is proposed that matches the first two moments of interrelated responses and linking variables. Several implementation issues are addressed, including representation of probabilistic design targets, matching responses and linking variables under uncertainty, and coordination strategies. Analytical and simulation-based optimal design examples are used to illustrate the new formulation. The accuracy of the proposed PATC formulation is demonstrated by comparing PATC results to those obtained using a probabilistic all-in-one formulation. DOI: 10.1115/1.2205870

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Techniques for Estimating Uncertainty Propagation in Probabilistic Design of Multilevel Systems

In probabilistic design of multilevel systems, the challenge is to estimate uncertainty propagation since outputs of subsystems at lower levels constitute inputs of subsystems at higher levels. Three uncertainty propagation estimation techniques are compared in this paper in terms of numerical efficiency and accuracy: root sum square (linearization), distribution-based moment approximation, and...

متن کامل

An SLP Filter Algorithm for Probabilistic Analytical Target Cascading

Decision-making under uncertainty is particularly challenging in the case of multidisciplinary, multilevel system optimization problems. Subsystem interactions cause strong couplings, which may be amplified by uncertainty. Thus, effective coordination strategies can be particularly beneficial. Analytical target cascading (ATC) is a deterministic optimization method for multilevel hierarchical s...

متن کامل

Design Optimization of Hierarchically Decomposed Multilevel Systems under Uncertainty

This paper presents a methodology for design optimization of decomposed systems in the presence of uncertainties. We extend the analytical target cascading (ATC) formulation to probabilistic design by treating stochastic quantities as random variables and parameters and posing reliability-based design constraints. We model the propagation of uncertainty throughout the multilevel hierarchy of el...

متن کامل

Optimal Multilevel System Design under Uncertainty

In this paper we consider hierarchically decomposed multilevel systems, and extend previous deterministic methodologies for optimal and consistent design of such systems to account for the presence of uncertainties. Specifically, we use the probabilistic formulation of the analytical target cascading process to solve the multilevel problem, and use an advanced mean value-based technique to esti...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005